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Abstract

This paper investigates the parameter estimation problem for brick masonry models. An identification procedure is

proposed in which the uncertainties of known parameters and/or errors of measurements are its elements of distinction.

The minimization process of the discrepancies between experimental data and theoretical measurements takes place by

means of a first order iterative method. The identification procedure is applied to two different problems: the calibration

of an interface model for brick–mortar joint in its functional form through monotonic experimental tests; to evaluate

the unknown parameters of a continuum model for brick masonry walls in its non-holonomic form by means of in-

plane cyclic shear–compression test of masonry panels. The general framework of the non-linear estimate methodology,

the parameter identification problems and the numerical results are presented.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Model calibration is an important phase of the theoretical investigation of the mechanical behavior of

materials and structures. Constitutive models for anisotropic materials, such as masonry, contain several

material parameters that have to be quantified on the basis of experimental tests. Nevertheless, these pa-

rameters cannot be determined explicitly from standard or sophisticated experimental tests because of

material heterogeneity and the simultaneous or sequential estimation through parameter identification

method must be carried out. It is well known that a parameter identification problem consists of the op-

timal estimate of the parameters through an inverse process in which the deviations between experimental
and theoretical measurements are minimized. Several issues emerge in this kind of process such as the

optimal design of experiments, linear or non-linear programming and methods of error treatment in the

optimization process or error estimate in the identified parameters (Bard, 1974; Sorenson, 1980; Luenberg,

1989; Federov and Hackl, 1997).

Although brick masonry is one of the most ancient and widespread composite materials, remarkable

difficulties are still encountered in the formulation of adequate constitutive models due to its heterogeneity
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and anisotropy. In such formulations a preliminary experimental and theoretical characterization of each

component, brick units and mortar, and of the interfaces must precede the definition of the global con-

stitutive equations. This work gives attention to the calibration problem of masonry constitutive models

considering the in-plane response either of the mortar–brick interface or of masonry walls under the
horizontal actions representative of the seismic ones.

This paper is organized as follows: In Section 2 some particular experimental and theoretical aspects of

the response of the mortar–brick interface and of in-plane loaded masonry walls are analyzed to introduce

some topics in the current research about masonry. In Section 3 two different models for masonry are

presented, an interface model for brick–mortar joints and a continuum model for brick masonry walls

(Gambarotta and Lagomarsino, 1997a,b). The two models have similar formulations and they both ex-

amine the inelastic mechanisms induced by damage and frictional sliding. However they apply to problems

with different complexities. The interface model concerns the local problem to analyze the brick–mortar
joint response considering few degree of freedom; while the continuum model concerns the evaluation of

the lateral response of in-plane loaded brick masonry shear walls considering finite element simulations

with a large number of degrees of freedom.

In Section 4 the theoretical aspects of the non-linear parameter identification problem are discussed,

three different estimate approaches are considered, the presence of the known parameters uncertainty and/

or of the errors in measurements characterizes them. Furthermore, an inverse procedure for the calibration

of the masonry models is proposed.

The aim of Section 5 is to verify the efficiency of the identification procedure proposed in the previous
section considering the different complexity of the masonry models. In the estimate process for the interface

model the constitutive equations are in holonomic form that implies a remarkable speed in computation. In

the case of the continuous model the equations are in the non-holonomic form performing finite element

analyzes and estimate processes in to high-dimensional parameter space.

2. In-plane response of brick masonry: experimental tests and mechanical models

Masonry is a composite material, whose mechanical response is non-linear even at low stress levels. A

high number of factors affect its in-plane behavior, among which are the mechanical and geometrical

properties of brick units and mortar, the characteristics of their interfaces and the geometrical arrangement
of the masonry. Experimental investigation of brick masonry is usually carried out at local and global level:

local tests consider the single components (mortar, brick units and their interfaces), while global tests in-

volve the masonry composite material in the form of simple assemblages or structural elements.

Several local tests are possible, but for the purpose of present work, only shear tests will be considered.

The shear test on brick–mortar joints is typically used, because the mortar joints are the predominant

planes of weakness. This kind of test is carried out on small assemblages of brick units and mortar bed

joints subject to horizontal and vertical loads (Aktinson et al., 1989; Van Der Pluijm, 1993; Binda et al.,

1994; Manzouri et al., 1995): the initial response is linear, then it becomes non-linear up to the attainment
of the limit strength; when acting under displacement control this test is characterized by a stable strain-

softening phase (Fig. 1) in which the tangential stress progressively decreases to obtain a residual shearing

strength of the broken interface between bricks and mortar joint. Such response is mainly due to the final

phase characterized by frictional sliding between bricks and it allows a complete description of the me-

chanical response of the interfaces.

The shear response of brick–mortar joints has been simulated by several interface models taking into

account the degradation processes which take place when opening and frictional sliding are activated (e.g.,

Lofti and Shing, 1994; Gambarotta and Lagomarsino, 1997a; Lourenc�o and Rots, 1997). The calibration of
these models is usually difficult, since some of the parameters have to be determined from indirect
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measurements. Such inverse processes can be facilitating when monotonic response is considered and the

constitutive equations are reduced to their holonomic form.

A useful test for masonry as composite material is the cyclic shear–compression test of masonry panels.

This test is meaningful to investigate the seismic behavior of masonry shear walls. Several researchers

adopted this experimental method among whom Anthoine et al. (1995), who tested two brick masonry

walls with different slenderness. The results of the quasi-static loading pointed out the effect of the height/
width ratio on the behavior of the walls (see Fig. 2). The low wall exhibited a limit lateral strength followed

by a post-peak behavior with a significant stiffness degradation and increase of dissipation. The cyclic

response of the high wall pointed out the presence of an overturning mechanism with low degradation and

dissipation.

Several continuum models for masonry have recently been proposed based on homogenization tech-

niques of heterogeneous material to take into account the effective geometry of the investigated elements

(e.g., Pande et al., 1989; Anthoine, 1995; Papa, 1996; Gambarotta and Lagomarsino, 1997b; Luciano and

Sacco, 1997; Lourenc�o et al., 1998). The constitutive equations of such models are worded in the non-
holonomic form. Moreover, the integration of these kind of constitutive equations needs a finite element

modeling of the two-dimensional domain. The calibration of such models is more complex than the

Fig. 2. Experimental results from shear tests superimposed on uniform compression on brick masonry walls of different height/width

ratio: (a) low wall h ¼ 135 cm, b ¼ 100 cm; (b) high wall h ¼ 200 cm, b ¼ 100 cm.

Fig. 1. Experimental results by the direct shear test (Van Der Pluijm, 1993).
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parameter estimation of the interface models. Besides the large number of parameters and the large

computational efforts for the parameter estimates, there are others factors, which affect the goodness of

estimate. For instance the efficiency of F.E. analysis or the difficulty of making a reliable a posteriori

analysis of identification process.

3. Damage models for masonry

An interface model for brick–mortar joint (Gambarotta and Lagomarsino, 1997a) and a continuum

model for masonry (Gambarotta and Lagomarsino, 1997b) are considered in order to simulate, respec-

tively, the experimental tests on brick–mortar interfaces and on masonry walls subjected to cyclic loads.

The interface model, based on damage mechanics takes into account the effects of compression on joints

in the damage and failure processes, the strain-softening response and the cyclic shear response superim-

posed on normal compressive stress. The constitutive equations for brick masonry are obtained through a

homogenization procedure involving the local damage model.

In the following part the characteristics of the continuum and interface models are discussed in order to
explain the meaning of each parameter, while one is referred to Gambarotta and Lagomarsino (1997a,b)

for a complete exposition of the models.

The continuum model for in-plane loaded brick masonry is obtained on the hypothesis of plane stress

condition. The brick masonry is assumed as a stratified medium made up of the bed mortar joint layer and

the brick units layer in which the mortar head joints are neglected. The constitutive model is obtained

homogenizing the two different layers and taking into account the inelastic mechanisms; the mean strain

e ¼ fe1 e2 cgT, where 1 and 2 are the directions parallel and normal to the mortar bed joints, is given by

e ¼ KMrþ gme�m þ gbe
�
b; ð1Þ

where KM is the elastic orthotropic compliance matrix of the masonry and depends on four elastic constants

(EM1;EM2;GM ; mM12); r ¼ fr1 r2 cgT is the mean stress; e�m ¼ f0 em cmg
T
and e�b ¼ f0 eb cbg

T
are the in-

elastic strains in mortar joint and bricks respectively; gm and gb are the mortar and brick volume fractions,

respectively.

The inelastic mechanisms in the bed joints, which locally characterize the interface model, describe the

failure in the mortar and the decohesion in the contact zone between mortar and brick. The extension em
and the sliding cm due to the inelastic mechanisms are assumed linearly dependent on the applied stress as

follows:

em ¼ cmnamHðr2Þr2; ð2aÞ

cm ¼ cmtamðs� f Þ; ð2bÞ
where cmn and cmt are the extensional and tangential inelastic compliance parameters, am is the mortal

damage variable, Hð	Þ is the Heaviside function which takes into account the unilateral response of the

joint, r2 and s are the resolved stresses on the mortar bed joint and f represents the friction in the mortar–

brick interface and reduces the sliding mechanism.
The other contributions of inelastic strain e�b consider the effects of the vertical compression on the

masonry and of the shear stresses on the brick units; such effects are expressed in terms of a damage

variable ab:

eb ¼ cbnabHð�r2Þr2; ð3aÞ

cb ¼ cbtabs; ð3bÞ
where cbn and cbt are inelastic compliance parameters of the bricks, ab is the brick damage variable.
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When the internal variables am, ab and the sliding level cm are known, Eqs. (1)–(3) supply the inelastic

strains for a given stress state. The evolution of variables are obtained defining three limit conditions in

which Ym the density of damage energy release rate in mortar joint, the friction f and Yb the density of

damage energy release rate in bricks are introduced, respectively. These limit conditions must be satisfied
during the loading process:

/s ¼ jf j þ lr2 6 0;

/dm ¼ Ym �Rm ¼ 1
2
cmnr2

2 þ 1
2
cmts2 �RmðamÞ6 0;

/db ¼ Yb �Rb ¼ 1
2
cbts2 �RbðabÞ6 0:

ð4a–cÞ

Eq. (4a) is based on linear Coulomb frictional law and it involves, beyond the friction f , the normal stress

r2 on the joint plan by means of the friction coefficient l. In (4b) and (4c) the mortar joint and brick unit

toughness functions RmðamÞ and RbðabÞ are introduced, respectively, depending on am, ab (damage vari-

ables) and b
m
, b

b
(model parameters). These parameters control the post-peak responses; hence for the

mortar joint and brick unit can be defined as Rzðaz; bz
Þ, ðz ¼ m; bÞ.

The masonry failure domain is obtained through the intersection of the mortar joint and the brick failure
domains. Finally cmn, cmt, cbn and cbt can be correlated to some parameters which can be measured directly

by experimental tests.

In the previous discussion concerning the homogenized constituent materials of the masonry the pa-

rameters of the elastic and inelastic response were introduced. In Table 1, they are summarized, distin-

guishing the quantities of the different phases of the response.

In order to evidence the peculiar aspects of the estimate problem for the interface model, some remarks

will be added when compression and shear stress act on the joint. In this case the model is reduced to the

shear response and it does not include the brick units damage.
The sliding response of the model is characterized by three different phases (see Fig. 3), each depending

on different sets of parameters shown in Table 2. The corresponding equations of three different phases are

written replacing the damage variable am with its expression in terms of material parameters. Moreover, in

the applications which will be shown, the toughness Rm is assumed equal to

RmðamÞ ¼
Rmcam 0 < am < 1;
Rmca�bm

m am P 1;

�
ð5Þ

whereRmc is the maximum value of the toughness corresponding to the limit state, am ¼ 1 (representative of

the mortar joint failure).

c ¼ s
Gm

; ð6Þ

c ¼ s
Gm
þ cmt

ðs� ljr2jÞ3

s2m
; ð7Þ

Table 1

Parameters of the continuum damage model

Branch phase Parameters Number of parameters

Elastic (OA) EM1, EM2, GM , mM12 4

Pre-peak (AB) l, rmr, sm, rbr, sbr, cmt, cbn (+ phase OA) 4+ 7¼ 11

Post-peak (BC) bm, bb (+ phase OA+phase AB) 11+ 2¼ 13
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c ¼ s
Gm
þ cmt

sm
s� ljr2j

� �2=bm

ðs� ljr2jÞ: ð8Þ

The model response is elastic until point A (see Fig. 3), when the limit state /s ¼ jsj þ lr2 ¼ 0, that is

until the shear stress s on the joint plane is less than the internal friction f . In this phase the shearing strain
in the joint is given by (6), this is a linear relationship ruled by the tangential elastic modulus Gm. Once such

limit is reached (branch AB) the response is not linear and ruled by (7). In this phase the model takes into

account the appearance and the propagation of the cracks in the mortar joint. In Eq. (7) the inelastic

compliance parameter of the joint cmt, the friction coefficient l and the joint cohesion sm are involved, as

well as the tangential elastic modulus Gm. The model response, after reaching the shear strength smr (limit

point B, branch BC), is characterized by a strain-softening phase that is governed by (8). In this phase the

parameter bm controls the slope of the post-peak branch and the shear stress tends asymptotically to the

limit value s1. This limit value represents the residual strength due to the friction.

4. Non-linear parameter estimation

Consider an experimental test performed on M specimens to estimate the unknown parameters of a

constitutive model or a mechanical model. Let Q be the number of sensors used to record the experimental

data. The sensors are localized by their coordinates X ¼ ½xqi
 (where q ¼ 1; 2; . . . ;Q denotes a sensor;

i ¼ 1; 2; 3 identifies the reference axes ðO; x1; x2; x3Þ). Let N be the number of readings in sequential times

t ¼ ftng (n ¼ 1; 2; . . . ;N ) for each sensor. The input data of experimental test at the time tn are defined as

�nn
n
¼ ½�nnhn
 (h ¼ 1; 2; . . . ;H < Q) and their components represent the variables associated with the H selected

Fig. 3. Model response of the mortar–brick joint to shearing strain superimposed on constant compressive stress.

Table 2

Parameters of the interface model

Branch phase Parameters Number of parameters

Elastic (OA) Gm 1

Pre-peak (AB) Gm, cmt, l, sm (+ phase OA) 1+ 3¼ 4

Post-peak (BC) Gm, cmt, l, sm, bm (+ phase OA+phase AB) 4+ 1¼ 5
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sensors. The H sensors are localized by their coordinates X I ¼ ½xIhi
 (a subset of X ). Likewise the output data
of an experimental test at time tn are defined as w

n
¼ ½wrn
 (r ¼ H þ 1;H þ 2; . . . ;Q) and their components

represent the variables associated with the ðQ� HÞ selected sensors. Analogously the ðQ� HÞ sensors are
localized by their coordinates XO ¼ ½xOri 
 (a subset of X ).

Then consider a theoretical model where a p-dimensional vector of unknown parameters h ¼ fhpg
(p ¼ 1; 2; . . . ; P ) and an l-dimensional vector of known parameters b ¼ fblg (l ¼ 1; 2; . . . ; L) may be dis-
tinguished. The model takes the general functional form:

w ¼ f ðn; h; bÞ; ð9Þ

where n ¼ fnhg (h ¼ 1; 2; . . . ;H < Q) are the independent variables and correspond to the input data of

experimental test �nn
n
; w ¼ fwrg (r ¼ H þ 1;H þ 2; . . . ;Q) are the dependent variables and agree with the

output data of experimental test w
n
; f ¼ ffrg is an r-dimensional vector of functions.

When the theoretical model is applied to simulate real process, i.e. an experimental test, the theoretical
variables n are replaced by the experimental input �nn

n
(relative to the observed test), the values of known

parameters b are substituted and it is necessary to estimate the unknown parameters. The elements of b are

measured by ad hoc experimental tests or they are estimated in previous identification problems. Whereas

the values of parameters h are not known and can be evaluated by an estimate process. That is they are

determined by an inverse problem that can be considered as a problem in which h are identified by min-

imizing a specific measure of performance. In this case model (9) takes the form

w
n
¼ f ð�nn

n
; h; bÞ: ð10Þ

The aim of an identification problem is the optimal estimate ĥh of unknown model parameters taking into
account uncertainties which might exist in this type of problem. These uncertainties are due to several

factors, experimental errors, the estimate method and theoretical model quality. Assuming that model

errors are negligible, in the following part of the section the other factors are analyzed.

In general, experimental test is affected with systematic and random errors. In this work it is assumed that

the former are negligible and the latter is characterized by a Gaussian distribution. The recorded data of M
specimens are used to evaluate the expected value and the variance of the studied experimental test. It

ensues that the Sn covariance matrix of the measurements (½ðQ� HÞ � ðQ� HÞ
) at time tn is defined as

Sn ¼ E dw
n
dw

T

n

h i
; ð11Þ

where dw
n
¼ w

n
� E½w

n

, E½w

n

 is the expected value of w

n
. In (11) w

n
experimental output are present only,

because the errors of �nn
n
experimental input are considered negligible.

In addition to the experimental errors, the estimate problem will also be affected by uncertainties of

known parameters; in fact these parameters are evaluated in a previous estimate or directly through ex-

perimental tests. To define the characteristics of this random component some general considerations are

necessary. Let the residual be en, at time tn, the vector whose elements are the difference between the ex-

perimental components of the vector w
n
and the corresponding theoretical components of the vector w

n
(Bard, 1974):

en ¼ w
n
� w

n
: ð12Þ

Assuming w
n
, w

n
and en to be normally distributed (Fadale et al., 1995), V n the covariance matrix of

residual en (½ðQ� HÞ � ðQ� HÞ
) is given by

V n ¼ E enf
h

� E½en
g enf � E½en
g
T
i
¼ E dw

n
dwT

n

h i
þ E dw

n
dw

T

n

h i
; ð13Þ

where dw
n
¼ w

n
� E½w

n

.
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The second part of (13) tallies with (11) which is the covariance due to the experimental noise; while the

first part is the covariance due to the statistical nature of the known parameters b and is given by Fadale

et al. (1995):

E dw
n
dwT

n

h i
¼ HnGHT

n ; ð14Þ

where Hn is the sensitivity matrix at time tn, which is defined by (Sorenson, 1980):

Hn ¼
of ð�nn

n
; h; bÞ

ob
ð15Þ

and G is the covariance matrix of known parameters b, in terms of uncertainties (the diagonal terms) and of

the correlation between the parameters (the non-diagonal terms). Thus Eq. (13) is written as

V n ¼ HnGHT
n þ Sn: ð16Þ

The matrix in the first part of (16) represents the uncertainties of b.
In the following part of section three different estimate methods are discussed in which the uncertainty of

known parameters and/or the errors of measurements are their elements of distinction.

An approach to account for both types of uncertainties in the identification process is the search for a

maximum of the conditional probability density function f ðejhÞ, in which random vector coincides with the
residual e, given the measurements of h (Sorenson, 1980):

f ðejhÞ ¼ ð2pÞðQ�HÞN
YN
n¼1

DetðV nÞ
" #�1=2

� exp
XN
n¼1

"
� 1

2
eTn V

�1
n en

#
: ð17Þ

When experimental data noise is assumed to be independent of unknown parameters, the estimate ap-

proach can reduce to maximizing the corresponding logarithmic function of (17) (Fadale et al., 1995):

Jðh; bÞ ¼ �2 ln f ðejhÞ ¼
XN
n¼1

ln½DetðV nÞ
 þ
XN
n¼1

eTn V
�1
n en: ð18Þ

If only the experimental uncertainties are present in logarithmic function the identification criterion

coincides with the maximum likelihood approach and (18) will be (Sorenson, 1980):

LðhÞ ¼ �2 ln f ðwjhÞ ¼
XN
n¼1

eTn S
�1
n en: ð19Þ

Finally, the estimate criterion coincides with the weighted least squares method if the information on
errors are only qualitative and inserted with weight factors:

UðhÞ ¼
XM
m¼1

XN
n¼1

eTmnW mnemn; ð20Þ

where W mn is the matrix of weight factors, at time tn considering the m specimen. The mean of such matrix

can be reassumed in the following manner, the various quantities w in the residuals emn may represent

entities measured on different scales. It clearly makes no sense to sum together squares of numbers of

different orders of magnitude. Moreover, some observations may be known to be less reliable than others.

The chosen solution to both of these problems is to assign a non-negative weight factor W mn to each emn. In
(20) the index of specimens number m (m ¼ 1; 2; . . . ;M) is present, because the number of experimental data
it must appear directly in the objective function.
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Fig. 4. Logical scheme to identify model parameters.

Fig. 5. Iterative algorithm for objective function minimization.
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The aforementioned estimate criteria are applicable to unconstrained and to constrained non-linear

identification problems and coincide with the objective function of the identification procedure proposed in

this work. The first phase of the procedure (see Fig. 4) consists of the comparison of experimental data with

the numerical results evaluated with a theoretical model. For such comparison, an objective function is
defined following one of the above mentioned criteria. Since the identification problems in the present study

are non-linear, the minimization of the function is based on an iterative method, a Levenberg–Marquardt

method characterized by use of the Gauss–Newton matrix as a simplified Hessian matrix (Luenberg, 1989;

Press et al., 1992). In this method, the parameter estimation in (k þ 1)th iteration can be written as

hkþ1 ¼ hk þ dk; ð21Þ

where

dk ¼ �ðekI þ eBBkÞ
�1g

k
; ð22Þ

in which ek is a non-negative parameter and the gradient g
k
and the Gauss–Newton matrix eBBk are de-

pendent to the different estimate criteria. The termination of iterative process occurs as a result of the

satisfaction of the following criteria: an iterative estimate is terminated when the change in value of ob-

jective function for successive steps becomes less than a prescribed tolerance value Ukþ1 � Uk < tol:1, to-
gether with the condition that the distance between successive trial points vanishes. The latter implies that

the search terminates when the magnitude of the steps becomes less than prescribed tolerance,

khkþ1 � hkk < tol:2.
It is worth noting that for the evaluation of g

k
and of eBBk first partial derivatives are only necessary, which

can be computed numerically. In Fig. 5 the numerical algorithm to minimize the generic objective function

UðhÞ is shown.

5. Numerical examples

The identification procedure is applied to two different problems: the calibration of an interface model

for brick–mortar joint in its functional form through monotonic experimental tests; the evaluation of the

unknown parameters of a continuum model for brick masonry walls in its non-holonomic form by means
of in-plane cyclic shear–compression test of masonry panels.

5.1. Non-linear estimate of holonomic interface model

When the brick–mortar joint is subjected to tangential loads superimposed on vertical compressive stress,

the constitutive equations of the aforementioned interface model are governed by the parameter vector
h ¼ fGm cmt l sm bmg

T
(see (6)–(8)). Although these parameters are related to the physical properties of

mortar joints some of them cannot be determined directly from simple experimental tests. Calibration of

the model thus takes place through the inverse processes described in Section 4 (see Fig. 5).

The shear tests are chosen as experimental tests. These tests are performed according to the RILEM

Recommendation 127 MS.B4 (Binda et al., 1994). The specimens consist of prisms made with three units

(bricks) and two mortar bed joints (triplet test). These tests were carried out by applying a monotonically

increasing displacement to the central unit, parallel to the bed joints (Fig. 6a). Four sets of specimens were

tasked. They were subjected to normal compression stresses of 0.12, 0.4, 0.8 and 1.25 MPa, respectively.
Each set consisted of three specimens subjected to the same compression stress. During each test, 10

LVDTs (linear variable displacement transducers) were used to measure horizontal and vertical
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displacements in different parts of the specimens. For parameter identification the following are considered

as input: the measurements recorded by the sensor identified by its position ½xI1i
 (where it is reminded that

the first index indicates the number of the sensor and i identifies the coordinates in a Cartesian reference)

from which the constant normal stress r21 is obtained (the subindex indicates the number of the sensor)

acting on horizontal mortar joints; the measurements recorded by the sensor in position ½xI2i
 which measure
the horizontal displacement increasing monotonically u2n (referred to the instant tn). As output the mea-

surements of the sensor LVDT3 in position xO3i are considered from which the horizontal force F 3n is ob-

tained (see Fig. 6b).

Since the constitutive equations are expressed in terms of stress and deformation, the displacement �uu2n is
transformed into shear strain c2n ¼ u2n=2s (s is the thickness of the mortar joint); while the horizontal force

F 3n is replaced by the mean tangential stress s3n ¼ F 3n=2A (A, area of the brick in contact with the mortar

joint) acting on the joint in the ratio.

As theoretical model the constitutive equations in the functional form (6)–(8) are considered character-
izing the three phases of the interface response in terms of tangential stress s vs. shear strain c. These
equations are formulated in discrete terms, referring to the instant tn, c2n ¼ f ðs3n; hÞ, whereas they must be

expressed as s3n ¼ f ðc2n; hÞ due to the softening branch in the experimental diagrams used as comparison

elements in the objective function. To this end use is made of a procedure of polynomial interpolation in

which for each experimental point Pnðc2n; s3nÞ two theoretical points are considered, Piðci; siÞ and

Piþ1ðciþ1; siþ1Þ, such that ci < c2n, ciþ1 > c2n; thus the equation of the optimal curve crossing through the

points Pi and Piþ1 is determined and the position of the new point Pnðc2n;ess3nÞ is evaluated; this has as

abscissa the experimental value c2n and as ordinate the value calculated with polynomial interpolation ess3n.
In the following the over-lining of the tangential stress will be omitted for simplicity of exposition

(ess3n ¼ s3n). This operation guarantees the correspondence on the abscissa of the theoretical measurements

with the experimental ones.

The objective function U in the problem under consideration, as first application of the procedure, is

based on the criterion (20) (remembering that in this criterion it is also necessary to insert the index m
indicator of the test number):

UðhÞ ¼
XM
m¼1

XN
n¼1

Wm3ne2m3n; ð23Þ

Fig. 6. Shear response of mortar joints: (a) the shear triplet test apparatus; (b) shear load vs. shear displacement curves under different

vertical compressive loads (0.12, 0.4, 0.8, 1.25 MPa), (Binda et al., 1994).
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where the residual em3n is equal to
em3n ¼ sm3n � sm3n: ð24Þ

In (24) the experimental tangential stress sm3n is measured by means of experimental tests on the triplet

and compares with the corresponding theoretical measurement sm3n ¼ f ðcm2n; hÞ evaluated through poly-

nomial interpolation and calculated in correspondence with shear strain cm2n measured experimentally. The

weight factors Wm3n, as explained in Section 4, are used to normalize the experimental data compared with

smr value of maximum tangential stress of each single test or to subdivide the experimental curves into

stretches of different weight. In the examples shown in the following part the former kind of weight factor is

chosen.

With reference to the iterative procedure of optimal estimation proposed in Section 4, it is pointed out
that the first attempt vector h0 is chosen in a domain limited by quantitative constraints of the elements of h.

The result of every minimization iteration is calculated through (21), where the expression of the gradient

turns out to be equal to

g
k
¼

XM
m¼1

XN
n¼1

osm3n
oh

� �T

Wm3nem3n

�����
h¼hk

; ð25Þ

and the Gauss–Newton matrix is particularized in that

eBBk ¼
XM
m¼1

XN
n¼1

osm3n
oh

� �T

Wm3n
osm3n
oh

� ������
h¼hk

: ð26Þ

For calibration of the model two different approaches are followed: in Case 1 three tests are used in the

identification process for each vertical stress; in Case 2, 12 tests for different vertical compression stresses
are used simultaneously. The two cases must be considered suitable approaches with different aims, on the

one hand (Case 1) one analyzes the effect of the variation of constant vertical stress r21 on the response of

the interface, on the other (Case 2) one seeks an instrument to estimate optimal parameters for the shear

response of the material in presence of friction and cohesion.

Before commenting on the results obtained, one wishes to highlight the fact that a preliminary study was

carried out (Morbiducci, 1998) in which estimates were made with pseudo-experimental data generated

numerically and with single experimental curves of the shear triplet tests. In the first case the checks on the

efficiency of the estimate procedure were carried out, in the second case it was decided to analyze the quality
of the experimental data. From that study it came out that despite the good results of fitting of the single

curves, the values of the estimates of unknown parameters are variables in the single estimates. These

variations can be put down to the scattering of the experimental curves (in particular to the variation in the

joint response in the softening phase) and to the dependence of the joint response on the imposed vertical

compression.

In Table 3, the experimental data (r2i , number of experimental measures N ), the identified parameters (ĥh),
the value of the final objective function (bUU) and the corresponding variance are shown. Some examples of

the numerical fitting obtained with the identified parameters are shown in Fig. 7. From the results obtained
(see Table 3) a dependence of the parameter values to the normal compression acting on the joint was

found, this dependence also found experimentally (Van Der Pluijm, 1993). Improvement of the mechanical

characteristics of the joint with increase in compression (Gm, sm) is put down to the bordering effect of the

bricks, whereas the decrease in the friction coefficient l may be linked to the different modes of cracking of

the sliding plane in relation to the vertical compression.

The variance of parameters in relation to the compression applied shows the necessity to carry out

calibration of the local model by means of sufficient experimental information linked to this variance.

Therefore one passed to Case 2 in which all the information available about shear response is inserted in a
single estimation process. The results obtained are summarized in Fig. 8 and in Table 4 in which the mean
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Fig. 7. Example of fitting of experimental data obtained from Case 1: F 3n ¼ s3n2A, u2n ¼ c2n2s.

Table 3

Case 1

r21 (MPa) N Iterations bUU Variance

0.12 513 26 2.32 0.004

0.4 561 35 2.41 0.004

0.8 621 42 2.19 0.003

1.25 681 47 3.70 0.005bGGm (MPa) ĉcmt (mm2/N) l̂l ŝsm (MPa) b̂bm

0.12 42.778 0.018 0.939 0.197 0.477

0.4 53.0190 0.0169 0.4460 0.3084 0.3670

0.8 86.7285 0.0330 0.2955 0.4729 0.3249

1.25 106.9400 0.0305 0.2022 0.6808 0.2757

Gm ! cmt $ l sm ! bm  

Fig. 8. Fitting of experimental data obtained from Case 2.
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values of the estimated parameters in Case 1 are also shown; these turn out to be substantially different
from the parameters estimated in Case 2.

In the identification problems the convergence of a minimization process is searched in a few iterations

(see Tables 3 and 4). Control of the convergence of estimate processes is carried out following the two

criteria described in Section 4.

5.2. Non-linear identification problem for damage continuum model

Direct calibration of the continuum model by means of global experimental tests (e.g. tests on masonry

panels) in general is not permitted in that the information is not sufficient to determine the value of the

single parameters, therefore it is necessary to use an implicit method. This may consist of the use of ex-

perimental test results on constituent materials and on small assemblages that allow one to indirectly trace
the mean values of the unknown parameters through application of the homogenization technique.

However, this type of process supplies very approximate values. The alternative approach is use of an

identification method which allows estimation of the parameters by means of global experimental tests. In

the case in consideration the damage continuum model is characterized by the following parameter vector,

containing a high number of elements h ¼ fEM1 EM2 GM mM12 l rm sm rb sb cmt cbn bm bbg
T
, thus one is

dealing with resolving an identification problem in a high-dimensional parameter space.

The experimental data inserted in the identification processes refer to the tests carried out on masonry

brick walls subjected to cyclic shear load superimposed on vertical compression (Anthoine et al., 1995, see
Fig. 9a). The specimens are two different walls. The first (low wall) is 1 m wide and 1.35 m high, while the

other is 2 m high (high wall). The wall thickness is 0.25 m. The masonry has English bond pattern brick unit

size (55� 120� 250 mm) and 10 mm mortar joint thickness. These tests were carried out initially by

Table 4

Case 2

r21 (MPa) N Iterations bUU Variance

0.12–1.25 2052 9 17.87 0.008bGGm (MPa) ĉcmt (mm2/N) l̂l ŝsm (MPa) b̂bm

0.12-1.25 67.652 0.05 0.535 0.208 0.471

Average values Case 1 71.305 0.027 0.415 0.414 0.363

Fig. 9. Shear–compression testing of brick masonry walls: (a) test set-up; (b) finite element model of brick masonry walls.
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applying a normal compressive stress of 0.6 MPa, then cyclic horizontal displacement with restrained ro-

tation was imposed at the top.

Each estimation process considers as input data: the constant sum of the vertical forces V ¼ F 1 þ F 2;

these components are applied at the points corresponding to the sensors (1) and (2), (respectively in position
½xI1i
 and ½xI2i
), through a continuous rigid element and their sum is kept constant throughout the loading;

the horizontal displacement �uu3n measured in correspondence with the sensor (3) (identified by the position

½xI3i
). Use of the two components of force F 1 and F 2 impedes the rotations that happen due to the effect of

the horizontal displacements impressed. As output one considers the horizontal force F 4n obtained through

the measurements of the sensor in position ½xO4i
.
To apply the continuum model to the analysis of large scale shear walls having general shape, a finite

element procedure is used based on the plane stress assumption for the wall. Four-node finite isoparametric

elements are used. The dimensions of the finite element (143� 135 mm) are chosen taking into account the
position in height of the mortar joints, which are the elements with the greatest weakness. In particular the

finite elements size is selected to obtain a direct correspondence between a Gauss point and a mortar bed

joint, while a no rigorous criterion is used to define the element width, that is a Gauss point is related to a

portion of mortar bed joint included between two adjacent mortar head joints (for more details see

Gambarotta and Lagomarsino, 1997b). To reproduce the boundary conditions of the experimental tests the

model of Fig. 10b is adopted. The mesh is made up of 70 elements (98 for the high wall). The load con-

ditions foresee a first step in which the constant vertical load is imposed and a successive series of increases

of cyclic horizontal displacements N (low wall, N ¼ 120; high wall, N ¼ 155) imposed on the nodes of the
rigid element indicated in the figure until the maximum displacement is reached (low wall, u2 ¼ 8 mm; high

wall, u2 ¼ 12:5 mm). The points of application of the imposed displacements enable reproduction of the

loading conditions of the simulated experimental test. The applied lateral deflection step u3n and the cor-

responding horizontal force F4n, are the quantities of comparison respectively of the experimental mea-

surements u3n and F 4n present in the objective function.

It is again preferred to use an estimation criterion (20) to be able to analyze the feasibility of the proposed

procedure for the non-holonomic model calibration, rather than carrying out studies of the influence of

uncertainties. The objective function U assumes the following form, in that every estimation process use
data from a single test:

UðhÞ ¼
XN
n¼1

W4ne24n; ð27Þ

where the residual e4n is equal to

e4n ¼ F 4n � F4n; ð28Þ

W4n is the weight factor inserted to normalize the measurements compared in the objective function with

respect to F max (maximum value reached by the horizontal force). This is the simplest choice for a weight
factor, it solves the problem to sum squares of different orders of magnitude. Besides there are not in-

formation about different reliable of observation, thus it is assumed that every observation has the same

weight.

The minimization process of (27) is based on the same numerical-iterative procedure used for calibration

of the interface model. This is possible in that use of such procedure (schematized in Fig. 5) requires

definition and imposition of the minimum condition of a function depending on the parameters to be

estimated. This operation is possible even in the case of calibration of the continuum model. The procedure

is generalized in order to use cyclic load histories and to insert a program for resolution of a numeric-
discrete problem as external element to the same procedure (e.g. finite element program). This
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generalization made the estimation method flexible and applicable to different theoretical models (Mor-

biducci and Shing, 1998; Morbiducci et al., 1999).

The estimation problem studied here is characterized by the necessity to adopt a finite element discret-
ization of the continuum model to evaluate the force components and to insert them as comparison

quantities with the corresponding experimental measurements. This means that for every iteration of the

minimization process it is necessary to carry out a finite element analysis to define the objective function U
and P finite element analyzes to calculate the partial numerical derivatives (with respect to P unknown

parameters) for the gradient g
k
and the Gauss–Newton matrix eBBk of the objective function.

Two different approaches to estimate the elements of h are followed, the first is known as the global

problem in which the entire parameter vector is estimated; in this case one disregards the possibility of

deducing some parameters from local tests. The second approach is classified as the reduced problem, in that
only some elements of the parameter vector are assumed as unknowns of the identification process. In

particular GM , sm, rb, cmt, cbn, bm and bb are introduced as elements of the vector to be identified, given the

Fig. 10. Example of fitting of experimental data in the identification problem for damage continuum model: low wall.
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type of test used and given the minor uncertainty in determining certain parameters. In the reduced

problem the elements of h that are not inserted in the calibration process are deduced from local experi-

mental tests and from the results of identification processes for the interface model. The reduced problem is

a case of non-linear calibration in which the unknown parameter vector h and the known parameter vector
b must be distinguished. In the following, some results obtained are shown considering the two different

geometry of the panels.

In Tables 5 and 6 the results obtained in the global problem are summarized in terms of the experimental

data (r2i , number of experimental measures N ), the identified parameters (ĥh), the value of the final objective
function (bUU) and the corresponding variance. Convergence in the estimation process is reached taking

account of the quantitative constraints on parameters, necessary to ensure their physical significance. The

quality of the estimate is good in terms of a posteriori variance. In order to reduce the number of iterations

the feasibility of the reduced problem is checked. In this case the number of unknown parameters is halved,
h ¼ fGM sm rb cmt cbn bm bbg

T
, b ¼ fEM1 EM2 mM12 l rm sbgT. The elements of b, except l, are implicitly

deduced from local experimental tests; whereas the friction coefficient l is assumed equal to the value

Table 5

Global problem, low wall

Nodes Elements Load steps Iterations bUU Variance

102 80 121 25 1.255 0.01bEEM1 (MPa) bEEM2 (MPa) m̂m12 bGGM (MPa) l̂l r̂rm (MPa) ŝsm (MPa)

2500 1800 0.192 531 0.6 0.1 0.34

1=ĉcmt (MPa) b̂bm r̂rb (MPa) ŝsb (MPa) 1=ĉcbn (MPa) b̂bb

1097 0.8 4.8 1.3 1087 0.24

Table 6

Global problem, high wall

Nodes Elements N Iterations bUU Variance

118 108 155 22 1.178 0.008bEEM1 (MPa) bEEM2 (MPa) m̂m12 bGGM (MPa) l̂l r̂rm (MPa) ŝsm (MPa)

2200 1700 0.189 541 0.58 0.15 0.35

1=ĉcmt (MPa) b̂bm r̂rb (MPa) ŝsb (MPa) 1=ĉcbn (MPa) b̂bb

986 0.9 4.9 1.2 1053 0.22

Table 7

Reduced problem, low wall

Nodes Elements Load steps Iterations bUU Variance

124 108 121 18 1.4166 0.01bGGM (MPa) ŝsm (MPa) 1=ĉcmt (MPa) b̂bm r̂rb (MPa) 1=ĉcbn (MPa) b̂bb

1439 0.4 763 1 5.6 1145 0.2

Known parameters (b)
EM1 (MPa) EM2 (MPa) m12 l rm (MPa) sb (MPa)

1910 1480 0.26 0.54 0.05 5.9
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identified by means of the estimation processes of the interface model. From a comparison of the results

obtained with the two different approaches (see Tables 7 and 8, Figs. 10 and 11) it can be seen that the

quality of the estimate in the reduced problem is slightly less in terms of a posteriori variance, but the saving

Table 8

Reduced problem, high wall

Nodes Elements N Iterations bUU Variance

118 108 155 13 1.1946 0.008bGGM (MPa) ŝsm (MPa) 1=ĉcmt (MPa) b̂bm r̂rb (MPa) 1=ĉcbn (MPa) b̂bb

850 0.45 650 0.8 5.0 1000 0.1

Known parameters (b)
EM1 (MPa) EM2 (MPa) m12 l rm (MPa) sb (MPa)

1910 1480 0.26 0.54 0.05 5.9

Fig. 11. Example of fitting of experimental data in the identification problem for damage continuum model: high wall.
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in calculation times is considerable. In fact the number of finite element analyzes in each estimate iteration

is halved and moreover the number of iteration comes down.

6. Conclusions

In this work a generalization of the indirect calibration problem of constitutive models has been pro-
posed analyzing the meaning and role of the elements that make up a parameter identification process.

An indirect calibration procedure is proposed in which the estimate method is chosen on the basis of

information on the uncertainties of known parameters of constitutive model and/or information on errors

of experimental measurements. The minimization process of the discrepancies between experimental and

theoretical measurements is based on a method of Levenberg–Marquardt characterized by use of the

Gauss–Newton matrix as a simplified Hessian matrix. The procedure is applicable for calibration of models

in holonomic and non-holonomic form. The experimental data compared with the theoretical measure-

ments can be monotonic or cyclic and more runs of the same experimental test can be considered.
In this work as first application of the numerical procedure the following estimates were carried out:

estimation of the unknown parameters of an interface model (in functional form) by means of monotonic

experimental test data; parameter identification of a continuum model (in non-holonomic form) for brick

masonry by means of cyclic experimental data.

The results obtained confirm the possibility of calibrating the two models by means of the experimental

tests chosen. In the case of the interface model the necessity to use experimental tests in which the com-

pression acting on the joint is made to vary is found. In the case of the continuum model two different

approaches to estimate the unknown parameters are analyzed, the global problem and the reduced
problem. The latter involved a considerable reduction of numerical iterations with a small reduction of the

estimate quality.
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